Splice Variants of SmgGDS Control Small GTPase Prenylation and Membrane Localization*
نویسندگان
چکیده
Ras and Rho small GTPases possessing a C-terminal polybasic region (PBR) are vital signaling proteins whose misregulation can lead to cancer. Signaling by these proteins depends on their ability to bind guanine nucleotides and their prenylation with a geranylgeranyl or farnesyl isoprenoid moiety and subsequent trafficking to cellular membranes. There is little previous evidence that cellular signals can restrain nonprenylated GTPases from entering the prenylation pathway, leading to the general belief that PBR-possessing GTPases are prenylated as soon as they are synthesized. Here, we present evidence that challenges this belief. We demonstrate that insertion of the dominant negative mutation to inhibit GDP/GTP exchange diminishes prenylation of Rap1A and RhoA, enhances prenylation of Rac1, and does not detectably alter prenylation of K-Ras. Our results indicate that the entrance and passage of these small GTPases through the prenylation pathway is regulated by two splice variants of SmgGDS, a protein that has been reported to promote GDP/GTP exchange by PBR-possessing GTPases and to be up-regulated in several forms of cancer. We show that the previously characterized 558-residue SmgGDS splice variant (SmgGDS-558) selectively associates with prenylated small GTPases and facilitates trafficking of Rap1A to the plasma membrane, whereas the less well characterized 607-residue SmgGDS splice variant (SmgGDS-607) associates with nonprenylated GTPases and regulates the entry of Rap1A, RhoA, and Rac1 into the prenylation pathway. These results indicate that guanine nucleotide exchange and interactions with SmgGDS splice variants can regulate the entrance and passage of PBR-possessing small GTPases through the prenylation pathway.
منابع مشابه
A new signaling paradigm to control the prenylation and trafficking of small GTPases
Members of the Ras and Rho families of small GTPases regulate diverse signaling pathways that promote normal physiological processes as well as diseases such as cancer. The localization of small GTPases in distinct subcellular regions defines which signaling pathways they activate, thus defining their participation in disease. The plasma membrane is viewed as the region of highest activity for ...
متن کاملThe SmgGDS splice variant SmgGDS-558 is a key promoter of tumor growth and RhoA signaling in breast cancer.
UNLABELLED Breast cancer malignancy is promoted by the small GTPases RhoA and RhoC. SmgGDS is a guanine nucleotide exchange factor that activates RhoA and RhoC in vitro. We previously reported that two splice variants of SmgGDS, SmgGDS-607, and SmgGDS-558, have different characteristics in binding and transport of small GTPases. To define the role of SmgGDS in breast cancer, we tested the expre...
متن کاملOncogenes and Tumor Suppressors The SmgGDS Splice Variant SmgGDS-558 Is a Key Promoter of Tumor Growth and RhoA Signaling in Breast Cancer
Breast cancer malignancy is promoted by the small GTPases RhoA and RhoC. SmgGDS is a guanine nucleotide exchange factor that activates RhoA andRhoC in vitro.We previously reported that two splice variants of SmgGDS, SmgGDS-607, and SmgGDS-558, have different characteristics in binding and transport of small GTPases. To define the role of SmgGDS in breast cancer, we tested the expression of SmgG...
متن کاملDual prenylation is required for Rab protein localization and function.
The majority of Rab proteins are posttranslationally modified with two geranylgeranyl lipid moieties that enable their stable association with membranes. In this study, we present evidence to demonstrate that there is a specific lipid requirement for Rab protein localization and function. Substitution of different prenyl anchors on Rab GTPases does not lead to correct function. In the case of Y...
متن کاملتأثیر آدنوزین ´5تری فسفات در القای آپوپتوز و مهار بیان ژن Survivin و واریانت پیرایشی ضد آپوپتوزی SUR-3B آن در سلول های K562
Introduction: Leukemia is a heterogeneous malignant disease in which progression at the level of CD34+ cells has a major impact in drug resistance and relapse. The multi-drug resistance gene product, P-glycoprotein is an inhibitor of apoptosis proteins (IAPs), such as Survivin that are expressed simultaneously with several putative drug resistance parameters in CD34+ leukemia cells. In fact, IA...
متن کامل